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• The evolution towards 6G

• Motivating examples of machine learning (ML) for Wireless 

• Three case studies

• Challenges and thoughts
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Evolution of Wireless Technology
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Image Source: http://tutorvoice.com/index.php/2015/10/11/generations-of-wireless-communication-technology/
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G = Generation
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• Generation: defined by new, fundamental, disruptive technology, a 
paradigm shift, for most devices (e.g., cellphones). 

• 1G to 4G: each defined by its unique, key technology

• 5G is different: 

• Technology’s view: Full duplex, cognitive radio, SDN/NFV, non-orthogonal 
multiple access (NOMA), small cells/HetNet, massive MIMO, mmWave 
communications; OR: spectrum expansion, spectrum efficiency enhancement, 
network densification

• Standardization’s perspective: Enhanced Mobile Broadband (eMBB), URLLC 
(Ultra Reliable Low Latency Communications), mMTC (massive Machine Type 
Communications)

• How about 6G?   

• Spectrum, Terahertz communications, light (VLC, FSO), blockchain, satellite, 
under water, VR/AR, …, intelligence

• AI is disruptive: ML vs. model based; but seems highly suitable for wireless 
systems, which are historically based on probabilistic models 

Image source: IMT-2020 (5G) Promotion Group, “5G vision of IMT-2020 (5G) promotion group,” Sep. 2014.
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Evolution of Hardware Platform
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Time is Right
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• Success in other fields: natural langrage processing, image recognition, gaming, …

• Epic events (good advertisement): 
• IBM Deep Blue vs. World Chess Champion Garry Kasparov (1997)

• IBM's DeepQA project: quiz show Jeopardy! against legendary champions Brad Rutter and Ken 
Jennings, and won the first place prize of $1 million (2011)

• Google DeepMind's AlphaGo/AlphaGo Zero: beat Ke Jie, the world No.1 ranked Go player (2017)

• Facebook/CMU’s Pluribus: beat 15 of the world’s top poker players (2019)

• Dr. Fill, Champion of the 43rd Annual American Crossword Puzzle Tournament (2021)

• Technology is ready:
• Availability of: Data, Computing, and open-source Platforms

• Smartphones and GPUs: more powerful than the computer used for moon landing/space shuttles

• Network size increasing, heterogeneous, and more complex: hard to model, hard to solve

• Wireless designs: historically based on probabilistic models (e.g., traffic, channel, interference, …), 
and are fault tolerant
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AI, ML and Deep Learning
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Image source: https://zhuanlan.zhihu.com/p/43435006
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AI, ML and Deep Learning (Cont’d)
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Image source: https://www.zhihu.com/question/57770020



Electrical and Computer Engineering

Existing Work on ML for Communications
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• Best Readings in Machine Learning in Communications
• https://www.comsoc.org/publications/best-readings/machine-learning-communications

• Surveys 
• F. O. Olowononi, D. B. Rawat and C. Liu, "Resilient machine learning for networked cyber physical systems: A survey for 

machine learning security to securing machine learning for CPS," IEEE Communications Surveys & Tutorials, vol. 23, no. 1, pp. 
524-552, Firstquarter 2021

• M. Chen, U. Challita, W. Saad, C. Yin, and M. Debbah, "Artificial neural networks-based machine learning for wireless 
networks: A tutorial," IEEE Communications Surveys & Tutorials, vol. 21, no. 4, pp. 3039-3071, Fourthquarter 2019

• Y. Sun, M. Peng, Y. Zhou, Y. Huang, and S. Mao, “Application of machine learning in wireless networks: Key technologies and 
open issues,” IEEE Communications Surveys and Tutorials, vol.21, no.4, pp.3072-3108, Fourth Quarter 2019 

• …

• Problems that have been explored
• Signal detection
• Channel encoding and decoding
• Channel estimation, prediction, and compression

• End-to-end communications
• Resource allocation
• Selected topics: localization, signal classification, full duplex, etc. 
• ….

https://www.comsoc.org/publications/best-readings/machine-learning-communications
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• The evolution towards 6G

• Motivating examples of ML for Wireless 

• Case studies

• Challenges and thoughts
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Wireless Channel Modeling
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Image source: https://www.tutorialspoint.com/cdma/cdma_fading.htm

• Parametric models:
• Free-space model, two-way ground model
• Rayleigh, Rician,  Lognormal

• Empirical models: 
• Okumura/Hata Model: based on experimental data 

collected around Tokyo, Japan, by curve fitting and 
adding correction factors for specific conditions

• …

• Ray tracing: for know environments using a simulator

• Channel estimation: 
• Complex channel function represented by basis expansion models:
• A regression problem 
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Wireless Systems Are Getting More Complex
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• Considers:

• Local execution, and 
offloading (to which BS)

• CPU frequency tuning

• Energy harvesting

• Mobility/handover

• Control knobs (cj, ej):

• cj: offloading or local 
execution

• ej: energy allocation

X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Optimized computation offloading performance in virtual edge computing 
systems via deep reinforcement learning,” IEEE Internet of Things Journal, vol.6, no.3, pp.4005-4018, June 2019.

Traditional analytical methods may not be capable of handling such complex problems 
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Distributed Algorithms
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• Distributed power control: • End-to-end congestion control

• Cognitive radios • Deep reinforcement learning

Image source: http://people.csail.mit.edu/hongzi/content/publications/DeepRM-HotNets16.pdf

K. Xiao, S. Mao, and J.K. Tugnait, “TCP-Drinc: Smart congestion control based on deep reinforcement learning,” IEEE Access Journal, Special Section on Artificial 
Intelligence and Cognitive Computing for Communications and Networks, vol.7, no.1, pp.11892-11904, Jan. 2019.
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Indoor Localization: Fingerprinting
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• Training locations: war-driving 
to collect measurements at the 
training locations

• Compare new measurements 
from an unknown location 
with stored fingerprints to find 
the best match

A classification problem 

X. Wang, X. Wang, and S. Mao, “Indoor fingerprinting with bimodal CSI tensors: A deep residual sharing learning approach,” IEEE Internet of Things Journal, vol.8, 
no.6, pp.4498-4513, Mar. 2021. 
X. Wang, L. Gao*, S. Mao, and Santosh Pandey, “CSI-based fingerprinting for indoor localization: A deep learning approach,” IEEE Transactions on Vehicular 
Technology, vol.66, no.1, pp.763-776, Jan. 2017.
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Indoor Localization: Radio Map Construction

15X. Wang*, X. Wang*, S. Mao, J. Zhang, S. CG Periaswamy, and J. Patton, "Indoor radio map construction and localization with deep Gaussian Processes," IEEE Internet of Things
Journal, vol.7, no.11, pp. 11238-11249, Nov. 2020.

• Construct a radio 
map with discrete 
training data

• Use the radio map 
for location 
estimation

• Deep Gaussian 
process

A regression problem 
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• The evolution towards 6G

• Motivating examples of ML for Wireless 

• Case studies
• Automatic Modulation Classification
• Energy efficiency maximization 
• 3D human skeleton tracking

• Challenges and thoughts
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Automatic Modulation Classification (AMC)
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• An essential component of cognitive radio (CR) to detect the nearby emitters, avoid radio 
inference, and improve spectrum efficiency

• Classify the modulation types of received signals without a priori information of the signal 
and channel; an important step between signal detection and demodulation 

• Applications: spectrum sensing and access, spectrum anomaly detection, classification 
security, and transmitter identification

M. Patel, X. Wang, and S. Mao, “Data augmentation with Conditional GAN for automatic modulation classification,” in Proc. 2020 ACM Workshop on Wireless Security 
and Machine Learning (WiseML 2020), in conjunction with ACM WiSec 2020, Linz, Austria, July 2020, pp.31-36.
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Related Work
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Likelihood-based: Feature-based: Deep Learning-based:

• Bayesian estimation for 
modulation classification 
assuming prior 
information such as 
channel and noise models

• High computational 
complexity and are not 
suited for highly dynamic 
environments

• Handcrafted features (i.e., 
cumulant, and maximum 
power spectral density)  
for classifying modulations

• Requires reliable features 
and manual selection

• Without assuming prior 
information such as channel 
models.

• Convolutional neural network 
(CNN), recurrent neural 
networks (RNN), and fusion 
methods are proposed

• A massive amount of training 
samples are required and the  
performance hinges upon the 
quality of the samples
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System Model
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• Dataset [1]
• RadioML2016.10A dataset: synthetic samples with 11 different modulations, including 8PSK, AM-DSB, AM-

SSB, BPSK, CPFSK, GFSK, PAM4, QAM16, QAM64, QPSK, and WBFM 

• 220,000 samples; 20,000 samples for each modulation type

• Sampled at 20 different SNR levels (from -20dB to 18dB), with 1,000 samples for each SNR level 

• Each radio signal sample consists of 128 consecutive I/Q data units

• CNN model [1]

[1] T. J O’Shea, J. Corgan, and C. Clancy, “Convolutional radio modulation recognition networks,” In Proc. 2016 Int. Conf. Engineering Appl. Neural Netw., Aberdeen, Scotland, 
213–226, 2016.
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Data Augmentation: CGAN Model
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Generative adversarial network (GAN): a generative machine learning model
• A generative model 𝐺: generate samples from random noise z
• A discriminative model 𝐷: distinguish generated samples from training samples
• Unsupervised learning, and thus cannot generate labeled data

Conditional GAN (CGAN): both 𝐺 and 𝐷 are conditioned on auxiliary information, i.e., class label 𝑦, that 
act as an extension to the latent space 𝑧 to generate and discriminate synthesized data 
• Adding class labels 𝑦 can control the output and guide the generator 𝐺 to figure out what to generate
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Experiment Results (Original vs. Synthesized Data)
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8PSK (SNR=16dB): (left) original data; (right) synthesized data.

AM-DSB (SNR=16dB): (left) original data; (right) synthesized data. BPSK (SNR=16dB): (left) original data; (right) synthesized data.

AM-SSB (SNR=16dB): (left) original data; (right) synthesized data.



Electrical and Computer Engineering

Experiment Results (Original vs. Synthesized Data, Cont’d)
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CPFSK (SNR=16dB): (left) original data; (right) synthesized data.

GFSK (SNR=16dB): (left) original data; (right) synthesized data. QAM16 (SNR=16dB): (left) original data; (right) synthesized data.

PAM4 (SNR=16dB): (left) original data; (right) synthesized data.
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Experiment Results (Original vs. Synthesized Data, Cont’d)
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QAM64 (SNR=16dB): (left) original data; (right) synthesized data.

QPSK (SNR=16dB): (left) original data; (right) synthesized data.

WBFM (SNR=16dB): (left) original data; (right) synthesized data.
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Training and Validation Errors

24
Training performance when SNR=16 dB with (a) 1000 and (b) 5000 synthesized samples.

CNN training can greatly benefit from the CGAN augmented data to achieve fast 
convergence and a smaller training loss 
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Confusion Matrices
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Confusion 
matrices for 
modulation 
classification 
when SNR = 
16dB with 
different 
amount of 
synthesized 
data 

Synthesized 
data helps
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Classification Accuracy

26Classification accuracy with different amount of augmented data

16% to 25% 
gain in F1 
score 
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• The evolution towards 6G

• Motivating examples of ML for Wireless 

• Case studies
• Automatic Modulation Classification 
• Energy efficiency maximization 
• 3D human skeleton tracking

• Challenges and thoughts
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Energy Efficiency Maximization

28

• The energy efficiency maximization problem: 

• Fractional format, conventional convex 
optimization theory does not apply

• NP-hard problem [1,2]; a global optimal incurs 
an exponentially growing complexity [2] 

• Duality theory and fractional programming [3] 
can provide suboptimal solutions 

[1] A. Zappone, E. Bjornson, L. Sanguinetti, and E. Jorswieck, “Globally optimal energy-efficient power control and receiver design in wireless networks,” IEEE Trans. Signal 
Process., vol. 65, pp.2844–2859, June 2017.
[2] A. Zappone, L. Sanguinetti, G. Bacci, E. Jorswieck, and M. Debbah, “Energy-efficient power control: A look at 5G wireless technologies,” IEEE Trans. Signal Process., vol. 64, no. 
7, pp.1668–1683, Apr. 2016.
[3] C. Isheden, Z. Chong, E. Jorswieck, and G. Fettweis, “Framework for link-level energy efficiency optimization with informed transmitter,” IEEE Trans. Wireless Commun., vol. 11, 
no. 8, pp.2946–2957, Aug. 2012.
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Approximation Algorithms
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• Branch-and-bound and Reformulation-Linearization Technique (RLT) [1]: high 
complexity

• Successive pseudo-convex approximation (SPCA) algorithm [2,3]
• To approximate the objective function with functions that have specific properties (e.g., convexity)

• Expand the nonconvex sum rate function in the numerator with a first-order Taylor series, which is 
positive concave

• The objective function is approximated by a pseudo concave function, which ensures that the original 
problem and the approximated problem shares the same sets of stationary points 

• Search the stationary points of the approximation problem. Pseudo concavity ensures that the resulted 
stationary points are global optimal for the approximated problem … 

• which is a suboptimal solution to the original problem

• But at high computation cost
[1] S. Kompella, S. Mao, Y. T. Hou, and H. D. Sherali, “On path selection and rate allocation for video in wireless mesh networks,” IEEE/ACM Transactions on Networking, vol.17, 
no.1, pp.212-224, Feb. 2009. 
[2] Y. Yang and M. Pesavento, “A unified successive pseudoconvex approximation framework,” IEEE Trans. Signal Process., vol. 65, no. 13, pp.3313–3328, July 2017.
[3] T. Zhang and S. Mao, “Energy-efficient power control in wireless networks with spatial deep neural networks,” IEEE Transactions on Cognitive Communications and 
Networking, vol.6, no.1, pp.111-124, Mar. 2020. DOI: 10.1109/TCCN.2019.2945774.
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Deep Learning Models
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DNN

PowerNet
(CNN based)
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Evaluation
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• Generate random locations {dij}, use the SPCA algorithm to compute the power 
allocation {pi}  

• Repeat, to generate a training dataset

• The DNN and PowerNet models, taking input {dij} and label {pi} , will be trained to 
minimize the loss function: 

• Compare the ML derived EE with SPCA computed EE
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Training Process
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DNN PowerNet
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EE Results Under Fast Fading Channels
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5 nodes 30 Nodes
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Simulation Results: EE
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Simulation Results: Execution Time
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• Motivating examples of ML for Wireless 

• Case studies
• Automatic Modulation Classification 
• Energy efficiency maximization 
• 3D human skeleton tracking

• Challenges and thoughts
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https://medium.com/@victoriamazo/3d-human-pose-estimation-ce1259979306

Human pose tracking becomes an important 
topic in human-computer interaction (HCI)

Human Skeleton Reconstruction and Pose Tracking

37

• Activity Recognition
1) Full-body sign language reading (e.g., traffic 

police hand signals, aircraft ground handling)
2) Fall detection of elders

3) Surveillance for security

• Motion capture and augmented reality

• Somatosensory games

https://www.ubisoft.com/en-us/game/just-dance/2021

https://www.openpr.com/news/1345254/3d-motion-capture-market-witness-a-consistent-growth-in-the-forecast-years-with-the-
key-vendors-phoenix-technologies-codamotion-solutions-vicon-motion-analysis-corporation-optitrack.html

Camera-based: privacy concerns
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RF Sensing Based Related Works

Require expensive and 
complicated hardware

Radar based:
1. Frequency-Modulated 

Continuous Wave (FMCW) 
radar-based system [1]

2. High accuracy and more 
robust to the environmental 
interference than Wi-Fi based 
systems

Wi-Fi based:
1. 2D pose estimation for 

multiple people [1], and 3D 
pose generation [2] 

2. Contact-free pose estimation, 
and wide range detection.

3. Low-cost hardware

Sensitive to the interference 
from environment

RFID based:
1. RF-Kinect based on RF 

hologram technique [4], and 
3D limbs movement tracking 
with RFID array [5] 

2. Good performance for single 
limb tracking 

Not suitable for the full body 
skeleton reconstruction

[3] M. Zhao, T. Li, M. Abu Alsheikh, Y. Tian, H. Zhao, A. Torralba, and D. Katabi, “Through-wall human pose estimation using radio signals,” in Proc. IEEE CVPR 2018, Salt Lake City, UT, June 2018, pp. 7356–7365.

[1] F. Wang, S. Zhou, S. Panev, J. Han, and D. Huang, “Person-in-WiFi: Fine-grained person perception using WiFi,” in Proc. IEEE ICCV 2019, Seoul, Republic of Korea, Oct. 2019, pp. 5452–5461.
[2] W. Jiang, H. Xue, C. Miao, S. Wang, S. Lin, C. Tian, S. Murali, H. Hu, Z. Sun, and L. Su, “Towards 3D human pose construction using WiFi,” in Proc. ACM MobiCom’20, London, UK, Sept. 2020, pp. 1–14.

[4] C. Wang, J. Liu, Y. Chen, L. Xie, H. B. Liu, and S. Lu, “RF-Kinect: A wearable RFID-based approach towards 3D body movement tracking,” Proc. ACM Int., Mobile, Wearable Ubiquitous Technol., vol. 2, no. 1, Mar. 2018.
[5] H. Jin, Z. Yang, S. Kumar, and J. I. Hong, “Towards wearable everyday body-frame tracking using passive RFIDs,” Proc. ACM Interactive, Mobile, Wearable Ubiquitous Technol., vol. 1, no. 4, pp. 1–23, Dec. 2018.

38
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RFID Data Collection
• Kinect Data collection 
• RFID Data collection

RFID Data Preprocessing
• Phase calibration
• Downsampling and 

synchronization
• RFID Data imputation

Skeleton Reconstruction 
• Deep neural network
• Vision-aided training

RFID-Pose/Meta-Pose System Overview

39

C. Yang, X. Wang, and S. Mao, “RFID-Pose: Vision-aided 3D human pose estimation with RFID,” IEEE Transactions on Reliability, to appear. DOI: 
10.1109/TR.2020.3030952. 
C. Yang, X. Wang, and S. Mao, “RFID based 3D human pose tracking: A subject generalization approach,” Elsevier/KeAi Digital Communications 
and Networks, Special Issue on Edge computation and intelligence, to appear. 
C. Yang, S. Wang, and S. Mao, “Subject-adaptive skeleton tracking with RFID,” invited paper, in Proc. The 16th IEEE International Conference on 
Mobility, Sensing and Networking (MSN 2020), Tokyo, Japan, Dec. 2020, pp.599-606.
C. Yang, L. Wang, X. Wang, and S. Mao, “Meta-Pose: Environment-adaptive human skeleton tracking with RFID,” under review. 
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Pose tracking experiments Pose estimation when the subject is walking

RFID-Pose: Vision-aided 3D Human Pose Estimation

C. Yang, X. Wang, and S. Mao, “RFID-Pose: Vision-aided 3D human pose estimation with RFID,” IEEE Transactions on Reliability, to appear. DOI: 
10.1109/TR.2020.3030952.
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Adapt to Different Data Domains

The same motion generates very different 
RF data when sampled in different 
environments 

RFID phase collected in two different domains for the same motion 

Developing 3D human pose estimation 
techniques adaptive to the environment has 
become a great challenge for RF based 
techniques

To analyze the influence from the 
environment, the RF data sampled from a 
different environment is considered as a 
different data domain

Different deployment environments and standing positions
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Meta-Learning Based Solution
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Structure of the deep learning model § Meta learning [1]: 
§ To learn the learning algorithm itself, 

i.e., learning to learn
§ To train a general model that can 

generalize across different tasks or 
datasets 

§ Learn and adapt quickly from few-shot 
of examples, and be able to keep   
adjusting as more data coming in 

§ The network parameters should first be 
well initialized in the pretraining phase

§ The network will be fine-tuned for a 
new data domain with only a few 
additional samples

New Data Domain

A Small Amount of New Data 

Few-shot Finetuning

[1] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation of deep networks,” arXiv preprint arXiv:1703.03400, July 2017.
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Meta-Pose Framework Overview
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Training framework of the proposed Meta-Pose system

The deep learning model is pretrained with 
data from four known data domains 

A domain fusion algorithm is adopted to 
produce more data domains 

The training variables are updated 
recursively by the Reptile meta-learning
algorithm

When transferring to a new data domain, 
we only need to collect very few 
examples to fine-tune the generalized 
network 

C. Yang, L. Wang, X. Wang, and S. Mao, “Meta-Pose: Environment-adaptive human skeleton tracking with RFID,” under review. 
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Implementation and Evaluation
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Seven data domains are 
sampled in the computer lab, 
and the 8th domain is sampled 
in an empty corridor 

• D1 to D4 are used for 
pretraining 

• D5 to D8 are considered as 
new data domains for 
validation

Five subjects participate in the 
experiments

Data domains used in the experiments Hardware configuration of Meta-Pose

UHF RFID Tags
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Experimental Results and Analysis
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Overall performance in terms of mean estimation 
error in the eight different data domains

Fine-tuning performance of different activities with 
different shots of new data in new data domain D5

Average error comparison with the baseline 
method RFID-Pose

Fine-tuning performance of different new data 
domains with different shots of new data

One shot of data in Meta-Pose is 
defined as consecutive data samples 
within 6 seconds

With few-shot finetuning, the mean 
error for all the new data domains is 
3.98cm, which is very similar to that of 
the pretrained data domains

4-shot fine-tuning is sufficient; the 
minimum error 4.04cm is achieved by 
walking

Mean error of RFID-Pose for all the 
new data domains is 6.27cm, while 
that for Meta-Pose is only 3.97cm (a 
36.68% reduction) 
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• Challenges and thoughts
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Challenges and Thoughts
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• Platform, dataset, benchmark 

• Need high quality (labeled) data: 
• How many cats do you need to recognize a cat (sample complexity)?

• The ML performance will be as good as your training data
• Inconsistency between the training dataset and real deployment

• Sparse noisy data è Data augmentation, data imputation (in time, 
space)
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Challenges and Thoughts (cont’d)
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• Although communications systems are based on probabilistic 
models, we do need to guarantee the worst-case performance in 
many cases è robustness

• Incorporate models into the ML model

• Many applications are in real-time: e.g., autonomous driving è
fast convergence, few-shot learning

• Dynamic environment è need to retrain the models è
generalization
• Transfer learning

• Meta-learning, few-shot learning, …
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Challenges and Thoughts (cont’d)
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• Reproducible results

• AI/ML for wireless and wireless for AI/ML

• Can ML/AI bring about new theory and breakthroughs in wireless communications 
and networking, as traditional models did?

• Explainable ML: need to know why it works or why it does not work

• Distributed ML/federated learning for resource constrained mobile devices and 
privacy

• The wireline network may need to be redesigned: the new bottleneck?

• Application, application, application!
• Technologies that did not fly: need killer apps 
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Conclusions

• 5G gets real, 6G is on the horizon

• Intelligence: likely to be a key component and common theme of 
the new generation 

• Advances in AI/ML algorithms, data, computing, and platforms: 
ready for wireless communications and networking

• Shared our experience of applying ML to solving several wireless 
problems

• Many challenges and interesting problems remain
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