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Three case studies
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Evolution of Wireless Technology

Evolution of mobile phone communications
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G = Generation

* Generation: defined by new, fundamental, disruptive technology, a
paradigm shift, for most devices (e.g., cellphones).

* 1G to 4G: each defined by its unique, key technology
* 5Gis different:

* Technology’s view: Full duplex, cognitive radio, SDN/NFV, non-orthogonal
multiple access (NOMA), small cells/HetNet, massive MIMO, mmWave

communications; OR: spectrum expansion, spectrum efficiency enhancement,
network densification

* Standardization’s perspective: Enhanced Mobile Broadband (eMBB), URLLC

(Ultra Reliable Low Latency Communications), mMTC (massive Machine Type
Communications)

* How about 6G?

*  Spectrum, Terahertz communications, light (VLC, FSO), blockchain, satellite,
under water, VR/AR, ..., intelligence

* Alisdisruptive: ML vs. model based; but seems highly suitable for wireless
systems, which are historically based on probabilistic models

User experienced data rate (Gbps) Connections density (10°Km?)
0.1t0 7 Gbps 1 million connections/Km*

Traftic volume density (Topskm?)

End to End Latency (ms)
Tens of Tbps/Km* 100

1 ms level

Mobility (Km/h)
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Evolution of Hardware Platform

Machine Learning in the Market

Technology cycle - from PC, to smartphone, to artificial intelligence?
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Time is Right

* Success in other fields: natural langrage processing, image recognition, gaming, ...

* Epic events (good advertisement):

IBM Deep Blue vs. World Chess Champion Garry Kasparov (1997)

IBM's DeepQA project: quiz show Jeopardy! against legendary champions Brad Rutter and Ken
Jennings, and won the first place prize of $S1 million (2011)

Google DeepMind's AlphaGo/AlphaGo Zero: beat Ke Jie, the world No.1 ranked Go player (2017)
Facebook/CMU’s Pluribus: beat 15 of the world’s top poker players (2019)

Dr. Fill, Champion of the 43rd Annual American Crossword Puzzle Tournament (2021)

* Technology is ready:

Availability of: Data, Computing, and open-source Platforms
Smartphones and GPUs: more powerful than the computer used for moon landing/space shuttles
Network size increasing, heterogeneous, and more complex: hard to model, hard to solve

Wireless designs: historically based on probabilistic models (e.g., traffic, channel, interference, ...),
and are fault tolerant g 6
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Al, ML and Deep Learning
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Al, ML and Deep Learning (Cont’d)

Expert Systems Unsupervised Leaming
Multi-Agent Systems
Ensemble Learning
Evolutionary Computation P —
Al Fussy Logic and Rough Set Reinforcement Leaming
Machine Leaming Regression
Knowledge Representation Classification / Clustering
s \\\\\\ N : ﬁ (' l ) D | I.
Recommender Systems \\\ Metric Leaming
Robotics and Perception 3 Causality Analysis
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Existing Work on ML for Communications

* Best Readings in Machine Learning in Communications

* https://www.comsoc.org/publications/best-readings/machine-learning-communications

* Surveys

. F. O. Olowononi, D. B. Rawat and C. Liu, "Resilient machine learning for networked cyber physical systems: A survey for

machine learning security to securing machine learning for CPS," IEEE Communications Surveys & Tutorials, vol. 23, no. 1, pp.
524-552, Firstquarter 2021

. M. Chen, U. Challita, W. Saad, C. Yin, and M. Debbah, "Artificial neural networks-based machine learning for wireless
networks: A tutorial," IEEE Communications Surveys & Tutorials, vol. 21, no. 4, pp. 3039-3071, Fourthquarter 2019

* Y.Sun, M. Peng, Y. Zhou, Y. Huang, and S. Mao, “Application of machine learning in wireless networks: Key technologies and
open issues,” IEEE Communications Surveys and Tutorials, vol.21, no.4, pp.3072-3108, Fourth Quarter 2019

* Problems that have been explored
* Signal detection
e Channel encoding and decoding
*  Channel estimation, prediction, and compression
*  End-to-end communications
* Resource allocation

* Selected topics: localization, signal classification, full duplex, etc. % 9
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Wireless Channel Modeling

* Parametric models:

Free-space model, two-way ground model
* Rayleigh, Rician, Lognormal

Power

multi-path
propagation

path-1
path-2
I ]path-B

Path Delay

e Empirical models:

Okumura/Hata Model: based on experimental data
collected around Tokyo, Japan, by curve fitting and
adding correction factors for specific conditions Base Station (BS)

Ray tracing: for know environments using a simulator

e Channel estimation:

M
» Complex channel function represented by basis expansion models: h(n;l) = Z b (D (n)
 Aregression problem =

X
%
Image source: https://www.tutorialspoint.com/cdma/cdma_fading.htm AUBURN UNIVERSITY
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Wireless Systems Are Getting More Complex

* Considers:

* Local execution, and
offloading (to which BS)

* CPU frequency tuning
* Energy harvesting

* Mobility/handover

. J el):
Control knobs (¢, €/): Fig. 1. Tllustration of mobile-edge computing (MEC) in a virtualized radio

access network, where the devices of mobile users are wireless charging
i enabled, the radio resource is sliced between conventional communication
execution services (the links in black color) and MEC services (the links in blue color),
and a centralized network controller (CNC) is responsible for all control plane
decisions over the network.

» d: offloading or local

* el energy allocation

Traditional analytical methods may not be capable of handling such complex problems

X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Optimized computation offloading performance in virtual edge computing fl’ 12

systems via deep reinforcement learning,” IEEE Internet of Things Journal, vol.6, no.3, pp.4005-4018, June 2019. AUBURN UNIVERSITY
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Distributed Algorithms

e Distributed power control:
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e Cognitive radios

Radio Environment

* End-to-end congestion control

Mobile users

Remote hosts: : The Internet Base station

Deep reinforcement learning

Reward r I
Take action a Environment
Observe state s I

K. Xiao, S. Mao, and J.K. Tugnait, “TCP-Drinc: Smart congestion control based on deep reinforcement learning,” IEEE Access Journal, Special Section on Artificial % 13
Intelligence and Cognitive Computing for Communications and Networks, vol.7, no.1, pp.11892-11904, Jan. 2019.

Image source: http://people.csail.mit.edu/hongzi/content/publications/DeepRM-HotNets16.pdf
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Indoor Localization: Fingerprinting

= 54 m > -

e Training locations: war-driving L Jll
to collect measurements at the —— g ] N
training locations W_‘t‘ \ |
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* Compare new measurements — | !
from an unknown location 25l | B
with stored fingerprints to find -
the best match [ e

| L
A classification problem I
g

X. Wang, X. Wang, and S. Mao, “Indoor fingerprinting with bimodal CSI tensors: A deep residual sharing learning approach,” IEEE Internet of Things Journal, vol.8, .
no.6, pp.4498-4513, Mar. 2021. 2R

X. Wang, L. Gao*, S. Mao, and Santosh Pandey, “CSI-based fingerprinting for indoor localization: A deep learning approach,” IEEE Transactions on Vehicular . fj <

Technology, vol.66, no.1, pp.763-776, Jan. 2017. " Ficeical and Computer Engincering
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Indoor Localization: Radio Map Construction

* Construct a radio A f
map with discrete

training data :_E
* Use the radio map Wﬁ’—] tl— |

for location 404 | ® Estimated RSS I
- . —
estimation *¥ Ground Truth RSS |

* Deep Gaussian
process

T
==

A regression problem

X. Wang*, X. Wang*, S. Mao, J. Zhang, S. CG Periaswamy, and J. Patton, "Indoor radio map construction and localization with deep Gaussian Processes," IEEE Internet of Things % 15
Journal, vol.7, no.11, pp. 11238-11249, Nov. 2020. n
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 Automatic Modulation Classification
* Energy efficiency maximization

e 3D human skeleton tracking
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Automatic Modulation Classification (AMC)

* An essential component of cognitive radio (CR) to detect the nearby emitters, avoid radio
inference, and improve spectrum efficiency

* Classify the modulation types of received signals without a priori information of the signal
and channel; an important step between signal detection and demodulation

* Applications: spectrum sensing and access, spectrum anomaly detection, classification
security, and transmitter identification

AMC
i - A - SR ———— :
g;/‘::lt)ols % —T Preprocessor
Modulator . ¢ '——> Demodulator
Classifier | }

%n

M. Patel, X. Wang, and S. Mao, “Data augmentation with Conditional GAN for automatic modulation classification,” in Proc. 2020 ACM Workshop on Wireless SecurityAUBURN O BRSITY
and Machine Learning (WiseML 2020), in conjunction with ACM WiSec 2020, Linz, Austria, July 2020, pp.31-36. " Bicowical and Computer Engincering



Related Work

Likelihood-based:

Bayesian estimation for
modulation classification
assuming prior
information such as
channel and noise models

High computational
complexity and are not
suited for highly dynamic
environments

Feature-based:

Handcrafted features (i.e.,
cumulant, and maximum
power spectral density)
for classifying modulations

Requires reliable features
and manual selection

Deep Learning-based:

* Without assuming prior
information such as channel
models.

e Convolutional neural network
(CNN), recurrent neural
networks (RNN), and fusion
methods are proposed

* A massive amount of training
samples are required and the
performance hinges upon the
guality of the samples
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System Model

* Dataset [1]
* RadioML2016.10A dataset: synthetic samples with 11 different modulations, including 8PSK, AM-DSB, AM-
SSB, BPSK, CPFSK, GFSK, PAM4, QAM16, QAM®64, QPSK, and WBFM

e 220,000 samples; 20,000 samples for each modulation type
* Sampled at 20 different SNR levels (from -20dB to 18dB), with 1,000 samples for each SNR level

» Each radio signal sample consists of 128 consecutive 1/Q data units

* CNN model [1]

Input Shape C1: Feature Maps  C2: Feature Maps F3: Dense Layer

2x 128 256@2x128 80@2x128 256
— F4: Dense Layer ~ Ouptut
11 11
Conv2D Conv2D Flatten Fully Fully SoftMax
Connection Connection
— » > >

ﬁm

[1] T.J O’Shea, J. Corgan, and C. Clancy, “Convolutional radio modulation recognition networks,” In Proc. 2016 Int. Conf. Engineering Appl. Neural Netw., Aberdeen, Scotland, NUBURN ORIVERSITY
213-226, 2016. Flectrical and Computer Engineering



Data Augmentation: CGAN Model

Generative adversarial network (GAN): a generative machine learning model

* A generative model (i: generate samples from random noise z

* Adiscriminative model D: distinguish generated samples from training samples

* Unsupervised learning, and thus cannot generate labeled data

Conditional GAN (CGAN): both G and D are conditioned on auxiliary information, i.e., class label y, that
act as an extension to the latent space z to generate and discriminate synthesized data

* Adding class labels y can control the output and guide the generator ( to figure out what to generate

Real I/Q data
X
‘Random noise Generator Discriminator Real/Fake |
z ) (@) (D) 4
Class label y ’ Class label y

3O Q
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Experiment Results (Original vs. Synthesized Data)
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Experiment Results (Original vs. Synthesized Data, Cont’d)
. ¥
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Experiment Results (Original vs. Synthesized Data, Cont’d)
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Training and Validation Errors

CNN training can greatly benefit from the CGAN augmented data to achieve fast
convergence and a smaller training loss

Training performance Training performance
18 - —— frain Ioss_error 08 - — frain IOSS_EITOT
—— val_efror —— val_error

(%]
312 -
(@] (o] \
-l 10 -
04
08
03
06
02
04 4
0 10 20 60 70 80 0 5 10 20 25

0 40 50 15
Epoch Epoch

(a) 1000 synthesized samples. (b) 5000 synthesized samples.
Training performance when SNR=16 dB with (a) 1000 and (b) 5000 synthesized samples.
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Confusion Matrices

Confusion
matrices for
modulation
classification
when SNR =
16dB with
different
amount of
synthesized
data

Synthesized
data helps

Tiuz label
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8PSK
AM-05H
AM.SS8 4
DPS<
CPFSC A
GF5K A
PAM4 1
CAM1E A
CAMGS
OPSK A
WBFM A

i
PP LES s
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(a) 5000 synthesized samples.
Canfusion matrix
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(d) 2000 synthesized samples.
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(c) 3000 synthesized samples.
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Classification Accuracy

. —— -

16% to 25%
gain in F1
score

—e— Generated 1000
-~- Generated 2000
—»— Generated 3000
-<«- Generated 4000
—a— Generated 5000
----- Without CGAN

—20-18-16-14-12-10-8 -6 -4—2 0 2 4 6 8 10 12 14 16 18
SNR(dB)

Classification accuracy with different amount of augmented data % -
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Motivating examples of ML for Wireless

Case studies

* Automatic Modulation Classification
* Energy efficiency maximization
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Energy Efficiency Maximization

* The energy efficiency maximization problem:

1000 " ; ) 1 T
R(p) : | |8 o ®
P1 = ) 5
( ) Ir;)?x nEE(p) P(p) 800 4 . 4 .-, ’i"'
st Pi € [0 Pmax] 600 — D2Dlink -
« Tx .o
* Fractional format, conventional convex sooll s B | | |
optimization theory does not apply . y . -
200 R S :
 NP-hard problem [1,2]; a global optimal incurs e .
an exponentially growing complexity [2] 0 Al 8 , ; - i
0 200 400 600 800 1

e Duality theory and fractional programming [3]
can provide suboptimal solutions

[1] A. Zappone, E. Bjornson, L. Sanguinetti, and E. Jorswieck, “Globally optimal energy-efficient power control and receiver design in wireless networks,” IEEE Trans. Signal

Process., vol. 65, pp.2844-2859, June 2017.

[2] A. Zappone, L. Sanguinetti, G. Bacci, E. Jorswieck, and M. Debbah, “Energy-efficient power control: A look at 5G wireless technologies,” IEEE Trans. Signal Process., vol. 64, no. ‘9" 5

7, pp.1668-1683, Apr. 2016. % 28
[3] C. Isheden, Z. Chong, E. Jorswieck, and G. Fettweis, “Framework for link-level energy efficiency optimization with informed transmitter,” IEEE Trans. Wireless Commun., vol. 11, AUBURN UNIVERSITY
no. 8, pp.2946-2957, Aug. 2012. el ind Compte Eneinecine



Approximation Algorithms

* Branch-and-bound and Reformulation-Linearization Technique (RLT) [1]: high
complexity

* Successive pseudo-convex approximation (SPCA) algorithm [2,3]

To approximate the objective function with functions that have specific properties (e.g., convexity)

* Expand the nonconvex sum rate function in the numerator with a first-order Taylor series, which is
positive concave

The objective function is approximated by a pseudo concave function, which ensures that the original
problem and the approximated problem shares the same sets of stationary points

Search the stationary points of the approximation problem. Pseudo concavity ensures that the resulted
stationary points are global optimal for the approximated problem ...

which is a suboptimal solution to the original problem

But at high computation cost

[1] S. Kompella, S. Mao, Y. T. Hou, and H. D. Sherali, “On path selection and rate allocation for video in wireless mesh networks,” IEEE/ACM Transactions on Networking, vol.17,
no.1, pp.212-224, Feb. 2009. i
[2] Y. Yang and M. Pesavento, “A unified successive pseudoconvex approximation framework,” IEEE Trans. Signal Process., vol. 65, no. 13, pp.3313-3328, July 2017. 2 29

%
u

[3] T. Zhang and S. Mao, “Energy-efficient power control in wireless networks with spatial deep neural networks,” IEEE Transactions on Cognitive Communications and suvsurx uNIvERsITY
Networking, vol.6, no.1, pp.111-124, Mar. 2020. DOI: 10.1109/TCCN.2019.2945774. Flecicatand Computer Engineeing



Deep Learning Models

DNN [ N
100
50
{dij} —»| —>»]| — {p:}
- Dense
— Dense Dense Dense
Vectorize
—> Relu =3  Sigmoid
PowerNet I : 1 :
| |
(CNN based) : T I
d; I 4 l I e 20\ l o .
I 4 | i A |
I I I
2 | 8 16 2 T 8 16 2 | Dense
Conv ' e s S A e e i i j ]
3x3 Residual learning block Residual learning block —
Flatten
e DU NOTRZON —> Batch Normalization —» LeakyRelu ——> Sigmoid

LeakyRelu
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Evaluation

* Generate random locations {d;}, use the SPCA algorithm to compute the power
allocation {p;}

* Repeat, to generate a training dataset

* The DNN and PowerNet models, taking input {d;} and label {p;} , will be trained to
minimize the loss function:

L =E[(p: — ﬁi)2]

 Compare the ML derived EE with SPCA computed EE
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EE Results Under Fast Fading Channels
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Simulation Results: EE

TABLE III
AVERAGED EE (KBPS/JOULE) FOR DIFFERENT TYPES OF FADING CHANNELS
N | Methods Path loss Shadowing Fast fading
EE (kbps/Joule) Percentage | EE (kbps/Joule) Percentage | EE (kbps/Joule) ercentage
DNN 0.6683 99.10% 0.6340 96.16% 0.5872 95.38%
5 PowerNet | 0.6636 98.40% 0.6306 95.63% 0.5849 95.01%
SPCA 0.6744 100% 0.6594 100% 0.6157 100%
DNN 0.5577 95.69% 0.5136 91.10% 0.4796 90.12%
10 | PowerNet | 0.5518 94.69% 0.5087 90.24% 0.4757 89.39%
SPCA 0.5828 100% 0.5637 100% 0.5322 100%
DNN 0.4203 88.90% 0.3775 82.50% 0.3556 81.26%
20 | PowerNet | 0.4346 91.93% 0.3862 84.40% 0.3630 82.96%
SPCA 0.4728 100% 0.4576 100% 0.4356 100%
DNN 0.3378 83.46% 0.2984 75.76% 0.2822 74.21%
30 | PowerNet | 0.3603 89.09% 0.3158 80.18% 0.2973 78.22%
SPCA 0.4048 100% 0.3939 100% 0.3800 100%
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Simulation Results: Execution Time

TABLE IV
COMPUTATIONAL TIME COMPARISON
CPU GPU
N | Methods time (ms) percentage e Gus) percentage
DNN 0.022 0.17% 0.025 0.33%
5 PowerNet | 0.091 0.69% 0.109 1.44%
SPCA 13.268 100% 7.546 100%
DNN 0.008 0.07% 0.026 0.32%
10 | PowerNet | 0.160 1.43% 0.107 1.33%
SPCA 11.159 100% 8.066 100%
DNN 0.012 0.09% 0.026 0.27%
20 | PowerNet | 0.483 3.75% 0.115 1.20%
SPCA 12.887 100% 9.549 100%
DNN 0.019 0.11% 0.029 0.25%
30 | PowerNet | 1.107 6.10% 0.131 1.14%
SPCA 18.161 100% 11.541 100%
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In This Talk

The evolution towards 6G
Motivating examples of ML for Wireless

Case studies

* Automatic Modulation Classification
* Energy efficiency maximization

* 3D human skeleton tracking

Challenges and thoughts
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Human Skeleton Reconstruction and Pose Tracking

Human pose tracking becomes an important
topic in human-computer interaction (HCI)

* Activity Recognition

1) Full-body sign language reading (e.g., traffic
police hand signals, aircraft ground handling)

2) Fall detection of elders

3) Surveillance for security

* Motion capture and augmented reality

Magnv Jazzy uij Crazy, . Fusnky Sunn,
T e

.
« Somatosensory games ' / \
s S

’m % \
a&n

Camera-based: privacy concerns g,, J \
. i 4 W\1/
https://medium.com/@victoriamazo/3d-human-pose-estimation-ce1259979306 \ v " { b‘v’j‘;‘( \ 37
https://www.ubisoft.com/en-us/game/just-dance/2021 r‘ - /1 )
https://www.openpr.com/news/1345254/3d-motion-capture-market-witness-a-consistent-growth-in-the-forecast-years-with-the- %
key-vendors-phoenix-technologies-codamotion-solutions-vicon-motion-analysis-corporation-optitrack.htm/



RF Sensing Based Related Works

RFID based:

1. RF-Kinect based on RF

Wi-Fi based: Radar based:

1. 2D pose estimation for 1. Frequency-Modulated

multiple people [1], and 3D
pose generation [2]

Contact-free pose estimation,
and wide range detection.

Low-cost hardware

Continuous Wave (FMCW)
radar-based system [1]

High accuracy and more
robust to the environmental
interference than Wi-Fi based
systems

hologram technique [4], and
3D limbs movement tracking
with RFID array [5]

Good performance for single
limb tracking

Not suitable for the full body
skeleton reconstruction

Require expensive and
complicated hardware

Sensitive to the interference
from environment

[1] F. Wang, S. Zhou, S. Panev, J. Han, and D. Huang, “"Person-in-WiFi: Fine-grained person perception using WiFi,” in Proc. IEEE ICCV 2019, Seoul, Republic of Korea, Oct. 2019, pp. 5452-5461.
[2] W. Jiang, H. Xue, C. Miao, S. Wang, S. Lin, C. Tian, S. Murali, H. Hu, Z. Sun, and L. Su, "Towards 3D human pose construction using WiFi,” in Proc. ACM MobiCom’20, London, UK, Sept. 2020, pp. 1-14.
[3] M. Zhao, T. Li, M. Abu Alsheikh, Y. Tian, H. Zhao, A. Torralba, and D. Katabi, "Through-wall human pose estimation using radio signals,” in Proc. IEEE CVPR 2018, Salt Lake City, UT, June 2018, pp. 7356-7365.
[4] C. Wang, J. Liu, Y. Chen, L. Xie, H. B. Liu, and S. Lu, "RF-Kinect: A wearable RFID-based approach towards 3D body movement tracking,” Proc. ACM Int., Mobile, Wearable Ubiquitous Technol., vol. 2, no. 1, Mag 018. 38
[5]1 H. Jin, Z. Yang, S. Kumar, and J. I. Hong, "Towards wearable everyday body-frame tracking using passive RFIDs,” Proc. ACM Interactive, Mobile, Wearable Ubiquitous Technol., vol. 1, no. 4, pp. 1-23, Dec. 201&‘;'
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RFID-Pose/Meta-Pose System Overview

RFID Data Collection Labeled Vision Data Estimated

Human Pose

Training with Supervision

Deep Neural Network

RFID Phase
Preprocessing

RFID Data Collection
* Kinect Data collection
e RFID Data collection

RFID Data Preprocessing

* Phase calibration

e Downsampling and
synchronization

* RFID Data imputation

Skeleton Reconstruction
e Deep neural network
* Vision-aided training

C. Yang, X. Wang, and S. Mao, “RFID-Pose: Vision-aided 3D human pose estimation with RFID,” IEEE Transactions on Reliability, to appear. DOI:

10.1109/TR.2020.3030952.

C. Yang, X. Wang, and S. Mao, “RFID based 3D human pose tracking: A subject generalization approach,” Elsevier/KeAi Digital Communications

and Networks, Special Issue on Edge computation and intelligence, to appear.

C.Yang, S. Wang, and S. Mao, “Subject-adaptive skeleton tracking with RFID,” invited paper, in Proc. The 16th IEEE International Conference on ¢.‘

Mobility, Sensing and Networking (MSN 2020), Tokyo, Japan, Dec. 2020, pp.599-606.

39

%
u

AUBURN UNIVERSITY

C. Yang, L. Wang, X. Wang, and S. Mao, “Meta-Pose: Environment-adaptive human skeleton tracking with RFID,” under review. flercalind Computer Eineering



RFID-Pose: Vision-aided 3D Human Pose Estimation

Estimated Pose Ground Truth
1.2 1.2
1 1
0.8 0.8
Nos Nos
0.4 0.4
0.2 0.2
0 0
0.5 0.5
0.5 0.5
0 0
0 0
Standing Still
Pose tracking experiments Pose estimation when the subject is walking
C. Yang, X. Wang, and S. Mao, “RFID-Pose: Vision-aided 3D human pose estimation with RFID,” IEEE Transactions on Reliability, to appear. DOI: %
u
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Adapt to Different Data Domains

The same motion generates very different
RF data when sampled in different
environments

Developing 3D human pose estimation
techniques adaptive to the environment has
become a great challenge for RF based

techniques

To analyze the influence from the
environment, the RF data sampled from a
different environment is considered as a

different data domain

3 TABLE IV
v, %‘ PERFORMANCE EVALUATION FOR DIFFERENT STANDING POSITIONS
ﬁg = | Position Index Estimation Error
= 1 oo [ n
"""" P o[ < - q:? L Position 1 (Trained) 4.53cm
@ R — — Position 2 (Trained) 3.82cm
_________ I i"""““:[ Pasition 3 (Trained) 4 75cm
%‘”i ﬁ hy Position 4 (Untrained) 8.38cm
Besaemmaet Position 5 (Untrained) 5.71cm
ysition 6 ained) 9.14cm
v
0 > Tom >

Different deployment environments and standing positions

Data Domain 1 Data Domain 2

Tag Index

0O 5 10 15 20 25 300 5 10 15 20 25 30
Sequence Number

RFID phase collected in two different domains for the same motion
41
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Meta-Learning Based Solution

Structure of the deep learning model = Meta learning [1]:
= To learn the learning algorithm itself,
Betiated Pose Secuence i.e., learning to learn
2 » To train a general model that can
¥ Forward Kinematic generalize across different tasks or
e datasets
Initial Skeleton kLol . .
Few-shot Finetuning . New ata Domain * Learn and adapt quickly from few-shot
L] . | of examples, and be able to keep
Recurrent --;| Recurrent |----+ Recurrent adjusting as more data coming in
Decoder Decoder vee Decoder
2 T t = The network parameters should first be
Recurrent [~ Recurrent [----4 Recurrent C e g . -
Encoder Encoder | s+ | Encoder well initialized in the pretraining phase
| |
i = The network will be fine-tuned for a
RFID Data Sequence | ..
J U e— new data domain with only a few

additional samples

‘9’% 42
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Meta-Pose Framework Overview

New Domain
Fine-tuning
Pre-Training Data Domains Target Data Domain

| Small Datasets
with Few Samples

Network Initialization

Domam Fusion

Fine-tuning

l

ob |

Meta-Pose
Initialization Algorithm

Training framework of the proposed Meta-Pose system

The deep learning model is pretrained with
data from four known data domains

A domain fusion algorithm is adopted to
produce more data domains

The training variables are updated
recursively by the Reptile meta-learning
algorithm

When transferring to a new data domain,
we only need to collect very few
examples to fine-tune the generalized
network

Y
u
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Implementation and Evaluation

Corridor Lab Q

. '
1 1
1 <
- ! E = '
3 LI
W3 W,
i W 1gm !
--.l.:g_@---i
2.4m 4.5m

Data domains used in the experiments

UHF RFID Tags

Hardware configuration of Meta-Pose

Seven data domains are
sampled in the computer lab,
and the 8th domain is sampled
in an empty corridor

* DI to D4 are used for
pretraining

* D35 to D8 are considered as
new data domains for
validation

Five subjects participate in the
experiments
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Mean Estimation Error (cm)

Experimental Results and Analysis

T T
| I Pretrained Network
[ Fine-tuned Network

D1 D2 D3 D4 D5 D6 D7 D8

Overall performance in terms of mean estimation
error in the eight different data domains

~

-

o

=

w
T

I | -Shot
I 2-Shot | |
[ 3-Shot
I i -shot | |
I 5-Shot

Mean Estimation Error (cm)
"~

Walking Twisting Standing Still

Arm Waving

Fine-tuning performance of different new data
domains with different shots of new data

Mean Estimation Error (¢cm)

D5 D6 D7 D8

Fine-tuning performance of different activities with
different shots of new data in new data domain D5

Average error comparison with the baseline
method RFID-Pose

Domain Index  RFID-Pose  Meta-Pose
D5 6.72cm 3.72cm
Dg 7.62cm 4.32cm
D+ 5.46cm 3.51cm
Dg 4.62cm 4.11cm
D,y 6.27¢cm 3.97cm

One shot of data in Meta-Pose is
defined as consecutive data samples
within 6 seconds

With few-shot finetuning, the mean
error for all the new data domains is
3.98cm, which is very similar to that of
the pretrained data domains

4-shot fine-tuning is sufficient; the
minimum error 4.04cm is achieved by
walking

Mean error of RFID-Pose for all the
new data domains is 6.27cm, while
that for Meta-Pose is only 3.97cm (a
36.68% reduction)
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Challenges and Thoughts

* Platform, dataset, benchmark
* Need high quality (labeled) data:

 How many cats do you need to recognize a cat (sample complexity)?
 The ML performance will be as good as your training data

* Inconsistency between the training dataset and real deployment

* Sparse noisy data =2 Data augmentation, data imputation (in time,
space)

AUBURN UNIVERSITY
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Challenges and Thoughts (cont’d)

e Although communications systems are based on probabilistic
models, we do need to guarantee the worst-case performance in
many cases =2 robustness

* Incorporate models into the ML model

* Many applications are in real-time: e.g., autonomous driving =»
fast convergence, few-shot learning

e Dynamic environment =2 need to retrain the models =
generalization

e Transfer learning

 Meta-learning, few-shot learning, ...

AUBURN UNIVERSITY
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Challenges and Thoughts (cont’d)

* Reproducible results
* Al/ML for wireless and wireless for Al/ML

e Can ML/AI bring about new theory and breakthroughs in wireless communications
and networking, as traditional models did?

* Explainable ML: need to know why it works or why it does not work

» Distributed ML/federated learning for resource constrained mobile devices and
privacy

 The wireline network may need to be redesigned: the new bottleneck?
* Application, application, application!
* Technologies that did not fly: need killer apps
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Conclusions

e 5G getsreal, 6G is on the horizon

* Intelligence: likely to be a key component and common theme of
the new generation

e Advances in Al/ML algorithms, data, computing, and platforms:
ready for wireless communications and networking

e Shared our experience of applying ML to solving several wireless
problems

 Many challenges and interesting problems remain
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